Cannibalism in Amoeba vespertilio (Penard).

By

Geoffrey Lapage, M.Sc., M.B.,

Leeturer in Zoology, The Victoria University of Manchester.

With Plates 28, 29, and 3 Text-figures.

1. Material and Methods.

Towards the end of July 1920 an olt hay infusion, which had been made some ten years previonsly and had bern left untonched in the laboratory since then, was examined to find out what organisms it still contained. Among al fairly abundant fama, which included Ciliata and some Flagellata, a good supply of smatl amoebae was obtained from the bottom deposit.

By transferring portions of this bottom deposit to Petri dishes and adding tap-water, these amoebae were cultivated. Althourh some of the cultures failed, others throve well, especially those in which the amoebae were feeding on the layer of small diatoms which quickly spread over the bottom of the dish and worm present also in the clumps of regetable débris.

From time to time aquarium water and boiled hay infusion were added to replace the loss of fluid by eraporation.

The amoebae were examined on slides with and without cover-glasses ; but this method was soon abmadoned in fatome of hanging drops, made in the following way:

A glass ring, raselined 1 mi both surfaces, was placed upon an ordinary slide. A cover-glass, upon which at Arop of the culture fluid from the bottom of the coulture had bern placed, was inverted, lowered upon the glass ring and then pressml NO. 264
down, so that the drop hung in a sealed chamber. A small drop of water was placed on the bottom of the chamber before it was closed, as an additional precaution against evaporation. These preparations were similar to those used for the study of Helkestimastix (Woodoock and Lapage, 31) and in them the amoebae could be observed for several days. It was found that, after a day or two, all the organisms in the drops, and especially Ciliata such as Paramoecium bursaria, became very sluggish; but they could be readily revived by lifting the cover-glass for a few minutes and replacing it again. The renewal of the air in the chamber, effected in this way, had a remarkably invigorating effect upon the organisms, the Paramoecium bursaria, for example, immediately resuming their normal lively activity. The method had the additional adrantage that the organisms under observation could be fixed at any desired moment, by simply removing the cover-glass, spreading out the drop upon it, after removing the adherent vaseline, and then dropping the film on to the surface of a dish of fixative.

Permanent preparations were constantly made in this manner. In addition amoebae were daily taken from the cultures and fixed upon albumenized slides, the culture fluid being spread out in a thin film before the fixative was added.

The fixative used was that introduced by Dr. H. Mr. Woodcock and was made up of two parts of a saturated solution of corrosive sublimate in water to one part of absolute alcohol with glacial acetic acid in the proportion of 5 per cent. Most of the slides were stained by Dohell's alcoholic modification of Heidenhain's iron haematoxylin method (Dobell, 8). This method, though in some respects inferior to the watery iron haematoxylin method, gave very good results. It has the double advantage orer the watery method of being quicker and of avoiding the treatment of the preparation with water or the lower grades of alcohol, in which many organisms, unless previously hardened overnight in 70 per cent. or 90 per cent. alcohol, are frequently washed off. It is undoubtiolly a very useful and reliable method for staining all kinds of

Protozoa. Other stains used were Heidenhain's watery iron haematoxylin and Delafield's haematoxylin. A counterstain was not used, since it is quite unnecessary after these stains and, in the opinion of the writer, tends to obscure, rather than to improve, the results. Both Bausch and Lomb and Zeiss microscopes were used, the ordinary high power dry lens being sufficient for most of the observations on the living objects; but, when higher magnification was needed, a Zeiss apochromatic oil immersion was used.

2. Characters of Amoeba vespertilio.

Considerable difficulty was experienced in the identification of the amoebae present in the cultures. It is not my intention to enter here into this vexed question ; but it is necessary to record the opinion that species of amoebae established upon descriptions of their external characters alone, without a prolonged study of them under all conditions and a knowledge of their nuclear apparatus and life-history, supported by the evidence of stained preparations, must be regarded as prorisional only.

Until such detailed knowledge is available, however, tha existing data must be utilized; and, when I say that the amoeba which forms the subject of this paper corresponds with that described by Doflein (9) and Penard (21) as Amoeha respertilio, it should be understood that I do not neeressarily regard Amoeba respertilio as a true specios.

The account and figures of this amocha given lyy Doflein (9) are so excellent, and my own olservations upon it eontimu his so exactly, that it is unnecessary for me in give how morn than a summary of its distinctive characters.

Amoeba respertilio is a small amocha. showing a wellmarked contrast between clear actoplasm and gramular condnplasm, and is, when healthy, wery active. Its pisemdopodia are typically brancheed, with pointed ends, and are composiod mostly of ectoplasm. Wholl the amoeta is creeping alomer a substratum, it assumes a rery charactoristic shatu, minmlling that of a bat's wing or of a duck's foot. Thu form is.
however, very rariable and, under certain chemical and physical conditions, star-shaped and other forms occur.

The nucleus is resicular, with a well-marked endosome, which stains deeply and shows, in preparations which have been suitably differentiated, a well-marked meshwork structure (Pl. 28, fig. 1). This endosome is surrounded by a clear halo in which no structure can be made out, and this clear area does not appear to be separated from the endoplasm of the amoeba by a definite nuclear membrane. The area of endoplasm immediately surrounding the nucleus stains, however, more deeply than the rest of the endoplasm, an effect which is due to the heaping up, as it were, in this region, of the fine gramules of deeply-staining matter which are distributed throughout the endoplasm on the strands of its meshwork.

The size of the amoeba raries considerably. Doflein (9) gives the size of the motile creeping forms as being $220-250 \mu$ long by $40-60 \mu$ broad, whilst the star-shaped forms measured from $60-150 \mu$, according to the length of their pseudopodia. He says that the nucleus varies from $10-15 \mu$ in diameter and the endosome from $7-10 \mu$. The amoebae in my cultures were rather smaller than this, the motile forms reaching 200μ long and sometimes rather longer, when the psendopodia were well extended; but the majority of both motile and star-shaped forms raried between $60-100 \mu$ in diameter. The nucleus measured from $7-9 \mu$ in diameter and the endosome from $4-7 \mu$. It should be mentioned, however, that these measurements were made upon stained preparations in which some shrinkage may have occurred.

The endoplasm usually contains numerous racuoles as well as abmulant granules. One or more contractile vacuoles are present. Penard (21) states that generally there is only one, but that two or three are often present, one of which seems to be the principal one, and that there is almost always a great number of racuoles distributed here and there, which appear and disappear as if they played the part of contractile vacuoles. I have also found that the presence of several contractile vacuoles is a frequent feature of the amoebae in cultures, but
amoebae with only one contractile vacuole were at least as common.

Doflein (9) placed some of his amoebae in a culture which contained Frontonia leucas which were full of green zoochlorellae. The amoebae fed upon the 'remains' of the Frontonias and themselves became infected with zoochlorellar. A similar infection occurred in come of my cultures also, the zoochlorellae being acquired in this case apparently from Paramoecium bursaria. These zoochlorella-infected amoelae were not, however, used for any of the observations described below and there is no eridence that camibalismoccurred in them.

The cultures also contained other small amoebae, which were definitely different in external appearance from the Amoeba respertilio, and which remained so. As far as I was able to judge from extermal characters only, these small amoebae were of the Amoeba limax or Tahliampfia type. Their arerage size was $28-30 \mu$ long bye $6-8 \mu$ broad : but their length raried from $20-50 \mu$, and their breadth from $4-12 \mu$. Ther possessed a resicular nuclens, similar in structure to that of Amoeba respertilio, its diameter being $\check{5}-6 \mu$, while the diameter of its endosome was $: 3 \mu$. These amoebae were present in large numbers in some of the cultures, especially in the later stages of the work.

A few amoebae, with a diaphanous appearance, rather larger than the A. limax and without the slug-like form which is characteristic of the latter, were not identified. Ther may have been either large A. limax forms or small examples of Amoeba respertilio, or they may have belonged to another species altogether.

Other Protozoa present in the cultures inchuded Paramoecium bursaria, Pleuronema chrysalis, and numbers of small Flagellata. No Thecamoehida were erees seen.

3. Obsertations on the ipiferes.

The amoebae har not been long moder sheervation before attention was arrested by certain remarkahle inchucions whieh many of them contained.

These were nucleated, spherical borlies, with a sharply-defined outline, whose protoplasm resembled that of the amoebae themselves. They wonld, indeed, have been almost indistinguishable from the amoebae containing them had they not bern in some cases enclosed in a very obvious vacuole, the margin of which was rery distinct. Between the enclosed body and the margin of the vacuole was a space, varying in extent in different cases (cf. Pl. 28, figs. 2 and 5; Pl. 29, figs. 9, 10, and 11), which was pinkish in colour and presumably contained Hnid.

The diameter of the spheres varied between $8-46.5 \mu$, both these figures representing extreme sizes. The majority of them varied between $20-26 \mu$. They wexe very distinct and wellmarked objects, much larger than the ordinary food vacuoles. In certain positions of the amoebae, however, when the endoplasm was packed with food or when the protoplasm, in the course of its streaming, became heaped up orer the sphere, the latter became very indistinct. This was especially the case in the rare examples in which the racuole round the sphere was narrow. It was then difficult to determine the exact line of demarcation between the enclosed sphere and the surrounding protoplasm. On such examples it is quite possible for an inexperienced worker to mistake the spheres, in spite of their large size, for the nucleus, a point to which we shall return later (cf. below, p. 690).

In stained preparations the spheres showed a trpical vesicular nucleus, exactly similar in structure to the nuclens of the amoeba itself, consisting, that is to say, of a central endosome with a meshwork structure, surrounded by a clear halo, free from chromatin and apparently structureless. Here again, as in the amoeba, no definite nuclear membrane conld be made out. The whole nucleus of the sphere, including the clear halo round the endosome, measured from ($i-S \mu$, and the endosome itself from 4-5 μ.

Since the measurements were made from stained preparations, in which some shrinkage may have occurred, the actual size may hare been rather larger than this, although rery little
difference was observed between the sizes of the nuclei and the endosomes of amoebae and spheres of the same size : but, of course, the bigger spheres showed bigger nuclei than the smaller ones. A comparison of these measurements of the nuclei of the spheres with those of the nuclei of the amoebae was very striking:

The correspondence was rery remarkable, especially when it was noted that the sphere scarcely differed in any respect, except in shape, from the amoeba and was almost indistinguishable from the rounded-off forms of the latter.

While it was inside the racnole, the sphere was nerer seen to move in any way by its own efforts. It was not ciliated nor flagellated, nor did it put out pseudopodia, but maintained, in most cases, a perfectly even spherical contour, although a few cases were seen in which its outline was oval or eren irregular (Pl. 29, figs. 8 and 10). The spheres were sometimes rolled over and over in the vacuoles by the streaming movements of the protoplasm, in which case the whole racuole probably rolled about as a whole. But, in one instance, when the streams of protoplasm were very active along the sides of the vacuole, the enclosed sphere was seen to rotate in the opposite direction.

The spheres could be squeezed out of the amocbace by gentle pressure on the cover-glass, and then lay quite motionless and spherical in the water near by. Two such squeezed out on July 21,1920 , at 2.30 p.m., remained gnite mehanged until 11 a.m. on the following day. It was also moticed then that numbers of such free, motionless spherical bodies, resembling rounded-off amoebae, could be found in the cultures. Dottein (9) states that, in old cultures of Amoeha respertilio which had become foul and acid in react ion, the anoe bate temded to round off and to die. Two questions therefore arose:
(1) Were these rounded bodies in my cultures individuals which had rounded off ? and (2) Were these rounded bodies the same as the spheres which had been seen inside the amoebae, and had the amoebae been extruding them into the culture ?

In order to throw some light on these questions a series of amoebae containing spheres was kept under observation, and the fact was established that the spheres were actually extruded by the amoeba rery frequently. Text-fig. a gives the successive stages in the process. It is a composite figure drawn from numbers of sketches made during observations on the living object, and it shows that the extrusion of the spheres resembles ordinary defaecation of the undigested remains of food. It should be noted, howerer, that the ingested sphere was often carried about in the amoeba for a considerable time, and might often remain for some time in the posterior end of the amoeba, separated from the water only by a very thin layer of ectoplasm, giving the impression that it is about to be extruded. Frequently, howerer, the protoplasm flowed round it again, and it was taken once more into the central part of the endoplasm. Further, when a vacuole containing a sphere was lying near the surface of the amoeba, and an ordinary food vacuole was lying close against it, the two being separated only by a thin film of protoplasm, the food vacuole might discharge its contents, while the sphere remained maffected and might be taken again into the depths of the endoplasm (Text-fig. A, S).

There was, therefore, no extermal appearance which could be taken as an invariable sign that the ingested body was about to be extruded. A sphere might be carried about thus, on the rerge, as it were, of extrusion, for a long time, and might then be taken in again; or it might be suddenly extruded: or it might, when deep in the endoplasm, rapidly approach the surface and be extruded almost immediately after it had arrived there. In one case the process lasted, from the first rupture of the enclosing membrane to the time when the sphere was quite free, about thirty seconds, from which it will be realized that, when once the extrusion had begun, it proceeded rapidly. F'urther, although the extrusion usually took place

Text-fig. A.

Freehand sketches of living amoebac to illustrate the ingestion and subsequent extrusion of the sphere (rounded-off amocha).
at or near the end of the amoeba which was posterior in progression, this was not invariably the case. The sphere might be extruded at the side or at any other point. Probably it is correct to say that, when the amoeba was progressing rapidly in one definite direction, extrusion usually occurred at or near the posterior end; but when the amoeba was putting out pseudopodia in all directions and was not changing its position much, extrusion might then occur at any point of its surface. This is probably true of ordinary defaecation also. When the ingested body was about to be extruded it appeared as in Textfig. A, 13, and was usually, though not always, surrounded bỵ a well-marked racuole, pinkish in colour, and separated from the water only by a thin layer of protoplasm. This layer became thinner and thmmer, until it was reduced to a mere membrane. Finally it was broken at one point. The ingested sphere then seemed to be forced out, slowly at first and then more rapidly, and at the same time the two halves of the enclosing membrane were withdrawn along its sides, so that the opening to the water was widened (Text-fig. a, 14, 15, and 16). A final effort of expulsion then quite suddeuly forced the ingested body out and the cavity which it had occupied rapidly closed.

That an active effort of expulsion occurred is suggested by the fact that the ingested sphere did not merely shide out, but was projected by the force of the expulsion well away from the side of the amoeba. This may have been, howerer, merely the result of the explosion of the fluid vacuole in which it lay.

The important detail to be noted here is the fact that the racnole containing the sphere sometimes contained diatoms or the partially digested remains of zoochlorelliae, as well as the sphere, and that these were expelled with it and lay with it free in the water. This is a small point which suggests that the sphere had been ingested at the same time as the diatoms, that the racuole in which it lay was a true food racuole, and that the sphere was an ingested organism and not a body formed by the amoeba itself.

4. Description of the Free Sphere.

One of these recently extrinded spheres, observed on July 21, 1920 , was being rolled over and orer by the movements of Paramoecium bursaria in the culture, and was seen to be perfectly spherical. The cytoplasm was clear, containing fine dark-looking grains together with some larger refractike gramles, the nature of which I have been unable to determine. In stained preparations the cytoplasm showed a well-marked meshwork structure and the fine grains referred to above were distinguishable, being distributed orer the strands of the meshwork and especially heaped up around the nuclens (cf. the description of the amoeba, p. 672).

In the living sphere the nuclens could not usmally be distinguished, but in a few cases I was able to detect it. It is possible that the spheres in which it was visible were dead ones.

As has been noted above, in stained preparations the nucleus of the sphere shows the same structure as that of the amoela itself. While some of the spheres contained no other structure, others, on the contrary, were full of diatoms and other bodies in food vacuoles (Pl. 28, figs. 2, 3, and 5). Sometimes, when the amoebae contained zoochlorellae the spheres also contained them.

The outline of the spleres was very definite, appearing as a dark line, giving the impression that ad definite limiting membrane was present. Examination of stamed preparations showed, however, that no such limiting membrane is really there, the effect of a meinbrane being produced by the arrangement of the meshwork structure of the cytoplasm at the surface, an effect which is commonly seen also in rounded-off amoclate.

In spheres observed under the vil-immersion lents, it was noted that, while immediately after extrusion no contractite vacuoles were present, these appeared a short time after extrusion. In no case have contractile racueles theren seem in the spheres while they are still in the amobrac. They were nower present when the spheres were extrudecl, but they oftrit appeared soon after extrusion. Since their appearatec is al
least a sign of vitality, some attention was paid to the time of their appearance, their number, and their rate of pulsation.

A series of observations upon many extruded spheres established the fact that the contractile racuoles appeared in them at irregular intervals after their extrusion. In one case, for example, a contractile vacuole appeared in the extruded sphere in less than a minute after its extrusion, and one minute after extrusion, two contractile vacuoles were present. In another case, however, no change occurred in the extruded sphere until twenty-two hours had elapsed, when two contractile racuoles appeared. But in the majority of cases one contractile vacuole had appeared in anything up to twenty minutes after extrusion and two were present about half an hour later. The number thereupon generally increased to four, or in a few cases to six or eren eight.

It would be natural to assume that the appearance of several contractile racuoles in the sphere was an exceptional occurrence, perhaps indicating a pathological condition of the sphere itself or unfarourable physical conditions of the fluid in which it lay. The active amoebae in the same fluid also contained more than one contractile vacuole. Indeed, according to Penard (21), Amoeba vespertilio often possesses two or three. In my cultures some amnebae were certainly seen with only one and others with several, so that no accurate statement can be made as to what is the normal number. But, if the amoebae in the hanging drop contained more than one, it was not remarkable that the spheres should also develop several, when they were extruded into the same chemical and physical enviromment.

It was, however, noted that the numbers of contractile vacuoles in any particular sphere might clange. In spheres which contaned four or more this number was often reduced to two, especially in those spheres which, as we shall see below, dereloped psendopodia and moved away. The observations on this point were not, however, suffieiontly numerons to bear more than the suggestion that the development of mumerous contractile racuoles in the sphere was at temporary reaction to its sudden change of enviromment, which disitppeared as
soon as the organism was able to adjust the physical state of its protoplasm to that of the fluid around it.

It may also be suggested that, if the vacuole in which the sphere had been enclosed were a food vacuole, the sphere, when set free, would be suffering from the effects of the attempt of the amoeba to digest it and would therefore naturally be in a pathological condition, and that the contractile vacuoles wonld be among the first of the organellae to betray this condition.

The contractile vacnoles arose deep in the protoplasm of the sphere and could be seen to more to the smrface, when they were ready to burst. Often in doing so they glided between the granules in the protoplasm, and were then compressed into a dumb-bell shape when they passed between the grannles, much as an air bubble is distorted when it is pressed under a cover-glass.

The pulsation rate was not very regular. It raried from as much as one contraction every quarter of a minute to one every six and a quarter minutes, the arerage being about arery minnte or rather less. Doflein's experiments (9) showert that high concentration in the medium, such as would be likely to occur in a hanging drop, induces slow pulsation and a decrease in size of the contractile vacuole. Some such influence probably in part explains the irregularity observed here: but no dotinite evidence can be offered either in support of or against this riew. The slowest pulsation seemed to occur in the spheres with several contractile racuoles.

When several contractile vacnoles were present they often burst simultaneously, leaving the sphere free from them: but when only two were present they seemed to alternate, one bursting while the other one grew, so that the sphere alwars contained one. Further, whell several were present, two halfgrown ones often fused to form one larger one. which thon moved to the surface and burst.

The contractile racuoles did not ilppear constantly in ant one position in the sphere, but, after bursting, might reappeat anywhere. That this is not a false impression problneed hy rolling over of the sphere is shown hy the fact that it was observed in perfectly motiontess spheres, and alson her the faet that when the bursting of one set of form was delayed the second
set of four might appear all in different positions from the first set, so that the sphere appeared to contain more than four contractile vacuoles.

The appearance of odd numbers of contractile vacuoles in this way, their occasional coalescence, their irregular pulsation rate, their multiple number, often subsequently reduced, together with the presence of sereral contractile vacuoles in the amoebae in the same preparations, suggested that abnormal phenomena were being witnessed. The physical conditions of the hanging drops were probably responsible for some of these irregularities. But the absence of contractile vacuoles from the spheres while they were still in the amoebae, and their appearance in them after they were set free, proved, at any rate, that the spheres were not mere dead defaecated matter, but were alive and were attempting to adapt themselves to the sudden change in their environment.
This view was confirmed by the occurrence in some, though not by any means in all, of the spheres, of tentative amoeboid morements, which, in a few cases, resulted in the sphere being transformed into an active small amoeba.

5. Amoeboid Movements in the Free Sphere.

In several cases spheres which were extruded under observation were kept under observation for several days, in the hope of some change being observed in them. In most of these cases the only change was the appearance of contractile racuoles, the pulsation rate of which gradually became slower and slower, mitil they stopped and the spheres disintegrated.

In other cases, however, the spheres not only acquired contractile racuoles, but also exhibited slight amoeboid movements. These were often mo more than slight changes of form, but definite small psendopodia were sometimes put out (Text-fig. в). In other rare cases the sphere became transformed into a small active amocba, which moved out of the field of observation.

Text-fig. в represents drawings made with the camera lucida of the changes undergone by such a sphere, and in Text-fig. a are freechand drawings of another case. It is interesting to note that, although in the period between extrusion and the

Text-fig. B.

Outlines of an extruded sphere (rounded-off amoeba), (drawn with the eamera lucida at the intervals of time stated in the figure, fo show the amoeboid movements often performed by the sphere after it had been extruded.
appearance of the pseudopodia the number of contractile vacuoles might vary from one to eight, it had always been reduced to two at the most, by the time that the amomboid activity of the sphere lad been well established.

6. Ingestion of the Sphere.

The extrusion of the spheres and the development of some of them into small a moebae had been seen before I was fortunate enough to observe an amoeba actually ingesting a free sphere. I had just watched the extrusion of this sphere, and the amoeba which had extruded it had hardly moved out of the field before another amoeba entered and immediately took up the sphere which the other had left behind. Further observation showed that this fate was suffered not only by the motionless spheres but also by those which had already become transformed into small active amoebae.

The process of ingestion was perfectly normal in every war. The big amoebae put out pseudopodia round the sphere and gradually enclosed it in a typical food vacuole. The result was an amoeba containing a sphere, exactly resembling the original amoeba, with a sphere inside it, which had awakened my interest at the beginning of the observations.

Not long afterwards I was able to follow and to sketch the dramatic chase of a small Amoeba limax by a large active Amoeba vespertilio. Text-fig. c gives the details of this drama. It will be seen that the large amoeba at first attempted to surround its prey (4,5 , and 6), and, after cutting off its retreat, nearly succeeded in enclosing it (7 and 8). At 9 the small amoeba is not inside the large one, but underneath it, the Amoeba respertilio haring streamed orer the Amoeba limax so as to hold it between itself and the glass. I have often seen Amoeba proteus capture Paramoecium and other Ciliates in the same manner. The Amoeba limax, howerer, was too nimble in this instance, for it escaped again (10) and the large amoeba made no further attempt to capture it. A similar case has been described and figured by Jennings (16), in which the amoeba also failed to secure its prey. Jennings concluded that the behaviour of the captor to the victim could not be explained as the result of chemical or tactile stimnli only, but that there was a finely co-ordinated adaptation of the morements of the captor to those of the rictim,

Text-fig C.

sn

Freehand sketches of the chase of an amoeba of the "lomax' typo
by an Amoeba vespertilio. and the partial ingestion and subsequent escape of the former.
a conclusion with which I am entirely in agreement. The behaviour of Amoeba proteus in its capture of large Ciliata like Paramoecium and Colpidium in cultures strikingly supports the same riew (cf. also Schaeffer, 23).

Penard (21, p. 700) has described another instance of the chasing of one amoeba by another which ended in the fusion of the two, and Leidy (18) has lescribed and figured what is undoubtedly the successful capture and digestion of an Amoeba verrucosa by Amoeba proteus. This latter case is particularly interesting, since Leidy says that the A. verrucosa assumed, in the body of its captor, the appearance of a large sphere, still retaining its contractile vacuole unchanged'. Jater on the 'victim had become pyriform and striate, and was then included in a large water vacuole. Still later the body of the A. verrucosa appeared to hare become broken up into five spherical, granular balls. . . .' Leidy was mable to follow the ultimate fate of these 'granular balls ', but he supposed that they were digested. A comparison of Leidy's figures with those illustrating this paper leares no doubt that he was dealing with an isolated instance of a process which was occurring on a larger scale in my cultures.

The fact, however, that Leidy's is the only one of these cases in which anything resembling actual digestion was seen, and the fact that I have only in one instance (cf. below) seen in my cultures doubtful evidence of digestion of the spheres, suggest that the amoebae only rarely are able to digest other amoebae which they may capture. Further, it seems probable that amoebae only rarely even attempt to capture other amoebae, and usually fail to retain these when they are active, however frequently they may succeed in ingesting them when they are sluggish or resting in a rounded-off condition.

The case in which the doubtful evidence, referred to abore, of digestion of a sphere was seem, was that of a sphere which was spherical when it was ingested, but which diel not remain so. It underwent distinct form changes while it was still inside its captor. Pl. 29, figs. 8 and 10 , represent other ingested spheres, drawn from stained preparations, which had assumed an irregnlar form while inside their captors. In the case just
referred to, which was kept under olservation, the sphere returned to the spherical form after it had been inside the amoeba about five hours. Later it became less and less distinct. and seven hours after it had been ingested it could no longer be distinguished. Apparently it hard leeen digested. This was the only instance in which anything like digestion of the spheres was seen. In all other cases which were kept under observation the spheres were sooner or later extruded by the amoebae which had digested them.

One other point remains to be mentioned before we discuss the nature of the spheres. It is illustrated by ll. 25 , figs. 1,2 , and 4 , and Pl. 29, fig. 7 , drawn from stained preparations, in which several examples of it were found at different dates. Pl. 28, figs. 1 and 2, show the phemmemon in its most typical form, and it will be seen, on reference to them, that there are here as many as four amotbae, enclosing one another, giving the impression of concentric fission. The figure looks, at first sight, like the drean of a pre-formationist, lat we shall see that it has a much more prosilic explanation. It is so remarkable that I at first believed it to be an artefact, duce, I supposed, to drying of the preparation, or to imperfect tixation. The other organisms on the slide were, howerer, well fixed and stained, and these remarkable structures did not occur on slides of one batch only but were present on slides made (1n widely different dates. Further, I saw what I interpreted as the same structures in the living organisms, although 1 was never able to conrince myself of this. In any case the phomomenon admits, as we shall see, of a perfectly natural explanation if we adopt the only hypoth sis which fits the whole of the facts.

There can be no doubt that there are actually several independent amoebae enclosing one another, beeanse their nuclei are perfectly distinct and each anme bo possesses a vacuole for the reception of the others. The muclei are, moreover, all exactly similar in structure to one another. Il. 29 , tig. 7 , is perhaps the most remarkable and was the most difficult to interpret. There are here pressint siven mache, and the interpretation of the figure is best deferred to a later stage (ef. below, p. 700).

7. Discussion.

Three main possibilities suggested themselves as explanations of the observations just described.

First, the spheres may have been parasites ; secondly, they may have represented some form of reproduction. such as endogenous budding; thirdly, they may indeed have been food bodies, the amoebae haring ingested other amoebae of the same or other species. On this last view, the phenomena were those of 'cannibalism ' As the title of the paper shows, I believe this last to be the correct interpretation.
In order to give my reasons for this conclusion, it will be necessary to discuss these three views in turn.

(1) The Parasite Hypothesis.

At first this riew seemed very probable. The spheres resembled, at first sight, organisms like the Suctorian Sphaerophrya, which is so common a parasite of Ciliata in cultures. Closer examination of them quickly proved, however, that not only did the spheres never show any structure resembling tentacles but also that no Suctoria were ever present in the cultures. Further, the nucleus of Sphaerophrya is not vesicular. The spheres, in fact, lid not show any single feature by which they could be classified as Suctoria.

Prandtl (22) has described a Thecamoebidan, Allogromia, which became parasitic upon Amoeba proteus, Arcella, Nuclearia, and Paramoecium in order to accomplish its sexual cycle in their interior. This organism, however, does not in any way resemble the spheres described above. Not only were no shelled Rhizopods ever seen in any of my cultures, but the structure of Allogromia, its possession of chromidia and the changes which it undergoes in its host, together with the fact that it is capable of reducing its host's vitality, definitely exclude any possibility that the spheres were parasites of this nature.
Buck (1) has described, under the name Phonergates vorax, another shelled Rhizopod, identical, according to

Bütschli (2), with Lecythinm hyalinum, which also may become parasitic upon Amoeba protens, Rotifera, Crustacea, dc., during its sexual cycle. Buck states that this organism may, when it is parasitic in Amoeba and other organisms, closely resemble Sphaerophrya. But I am convinced, after reading his paper and studying his figures, that Phonergates has no points of resemblance to the spheres here described, except, perhaps, that it is about the same size.

Penard (21d) has described in an amoeba which he names Amoeba alba, a parasite similar to one seen by Buck in Arcella and later found by Dangeard (${ }^{2} c$) in the Heliozoa Nuclearia simplex and Heterophrys dispersa and called by him Sphaerita endogena. The form seen by Penard belongs to the Chytridiaceae, and he thinks that it is similar to that described by Chatton and Brodsky (5) in Amoeba limax. The latter authors discuss the whole question of these and allied parasites, and it is obvious that none of these parasites resembles the spheres described above.

Another parasite, Nucleophaga amoeboea, allied to the above, has also been described by Dangeard (\%) , Penard ($21 d$), and others. It attacks the nucleus of rarious amoebae. Doflein (9) has further described the formation of giant nuclei in Amoeba vespertilio, which is the amoeba with which we are dealing, due to a parasite, which he regards as being closely allied to, if not identical with, the Nucleophaga of Dangeard. The spheres described above have, however, obviously nothing to do with this or any ot her nuclear parasites, since the nucleus of the amoeba containing the sphere was always intact and normal and the sphere itself had a nuclens of its own, which was very similar to that of the amoehat which contained it.
Leidy (18) has described and figured a mumber of interesting inclusions in Amoeba proteus and other species. His observations were, however, made mon the living ohject only, and it is unfortunately impossible to defermine from his figures and descriptions what was the real nature of these inclusions. Some of his figures of them, describerl hy him as mulni, might.
equally well be interpreted as parasites of the Chytridiacean type referred to above. On Pl. viii, figs. 12-16, of his book he figures a'multinucleate' Amoeba villosa, and in fig. 15 he shows a process which he describes as the bursting of the nuclens and the expulsion of its coarsely-granular contents. He was almost certainly dealing here with a Chytridiacean parasite and not with a multinucleate amoeba at all. Doubt must, therefore, be entertained as to whether his other figures of the nuclei of the rarious amoebae described by him really represent the muclens. It is doubtful, for example, in the case of the form of 'Amoeba proteus' which he figures in Pl. viii, figs. 17-25, and describes on p. 53 ; and also of those shown in Pl. ir, fig. 25, also of 'Amoeba proteus'. The same doubt applies to the nucleus of Dinamoeba (Pl. vii, figs. 5, 7, and 8) described on p. 91 as a 'large, pale gramular nucleus, surrounded by a clear halo; an appearance which the true nucleus of Amoeba proteus rarely or never presents. It is much more likely that what he satw was either a parasite or some other gramular organism which had been ingested. The excellence of Leidy's observations in general leads one, however, to accept most of his interpretations, and it is to be remembered that, without the control of stained preparations. mistakes of this kind are almost unaroidable.

Wallich (29) records a number of observations upon living Amoeba villosa, but in this case also it is practically impossible, in the absence of stained preparations, to determine exactly what he was dealing with. In the first place it is doubtful whether the bodies which he regarded as nuclei were in reality nuclei at all. If they were, it is probable that they were, as some of Leidy's undoubtedly were, nuclei infected with a Nucleophaga. And Carter (4, 4a) probably fell into the same error.

It became obvious, therefore, that the spheres showed no resemblance to any of the parasites of amoeba of which a full description was available. The following general considerations also contributed to the abandomment of the parasite hypothesis.

First, the sphere did no damage to the amodba which con-
tained it. At any rate no damage was demonstrable, and the amoebae lived and multiplied normally while they contained spheres, and are, indeed, still living at the present time in the same cultures, although only rarely do they now contain spheres.

Secondly, if the spheres were parasites it is difticult to understand why they were so frequently extruded by the amoebae. When a parasite has gained entrance to its host it usually does not leave it, except for the purpose either of propagative reproduction or of mechanical distribution of its species. Such a parasite would, at some time or other during its sojourn in its host, be likely to show some evidence of its reproductire crcle. The spheres, however, never showed any signs of any reproductive capacity whatever, either when inside or outside the amoebae. They were taken in and passed out in the same manner as ordinary food matter would be ingested and extruded, behaving in a strictly passive manner.

It occurred to me that the amoebae and the spleres might be symbionts or commensals. Against this highly improbable theory was the fact that a vacuole, filled with fluid, was present round the sphere. In other cases of symbiosis among the Protozoa, as, for example, that of the zooxanthellae and zoochlorellae, the latter occurring under certain conditions in the very amoebae under consideration, no vacuole surrounds the algae.
(2) The Hypothesis of Findogenous Budding.

The second hypothesis, that the spheres wert andogenous buds, was much moreattractive and led me astray for some time. I should have liked to have been able to prove that they were buds, and very nearly succeeded in convincing inyself that they were. But the tinding of such structures as those shown in P1. 28, figs. 1 and 2, and P1. 29, fig. 7, where two, there, or four amoebae were enclosed within one anotlery, sumed to stretch the theory of endogenons bulding rather far. Before ascribing such remarkable structures ats these to ondogenous budding it
seemed wise to reconsider the data. When this was done it became obrious that the spheres were not endogenous buds.

Throughout my stained preparations I have nerer seen any signs of change in the nucleus, either in the amoeba or in the sphere, although I have very carefully searched for such eytological eridence of the formation of a bud. Whatever the size of the amoebae or of the spheres might be, the nuclei of both were always in the same condition, that is to say, in the 'resting' condition which has been figured; the nucleus of the sphere was always similar in structure to that of the amoeba.

I have tried hard to find evidence of the division of the nucleus of the amoeba to form the nucleus of the sphere, or eridence of the formation of the latter from chromidia extruded by the nucleus of the amoeba. Indeed, under the influence of the hypothesis of endogenous budding I have often thought I have seen chromidia, just as I have often thought I have seen in this and in other forms, centrosomes, centrioles, and other structures, when I have wanted to find them. But these structures have, on re-examination, proved to be, in every case, either figments of my own imagination based upon improperly differentiated slides, or artefacts. I am now convinced that there is no evidence, of any sort or kind, of changes in the nuclei either of the amoebae or of the spheres in my slides.

If endogenous budding had been going on to the extent that the abundance of the spheres would suggest, some evidence of the mode of formation of their nuclei from the nuclei of the parent amoebae would have been seen. It is true that even binary fission is seen only very rarely, as Doflein also points out (9). In my slides I hare seen only two or three dividing amoebae, and in those the two daughter nuclei had already returned to the 'resting ' condition. This is the only evidence that I have seen, either in the stained or in the living material of any reproductive processes whatever.

It is to be remembered, moreover, that when the endogenous buds are being formed in an organism like the Suctorian Dendrocometes paradoxus, the contractile racuole
is present while the bud is still within the parent. It is, in fact, one of the first of the organellae to appear, and its presence can be taken as an indication that bud formation is in progress (Lapage and Wadsworth, 1\%). In the spheres, on the contrary, a contractile racuole was nerer seen while the sphere was within the amoeba. It did not appear in the sphere until an appreciable interval had elapsed after the sphere had been expelled.

Further than this, endogenoms buds, in other groups of Protozoa, do not usually vary much in size in any particular species producing them. They are cut out of the parent to a definite size which remains unaltered, and it is not true that they are smaller when they are first formed and that they grow to a mature size before their birth. The spheres, however, although they show a striking uniformity of structure, do vary a good deal in size, some being as small as 10μ in diameter, others up to 46μ. This variation in size suggests that they are not endogenous buds. Further, in the smallest ones the nucleus is fully formed and typical, measuring 6μ in diameter, the endosome measuring 3μ in diameter. This is a significant fact, when we remember that the nucleus of the A. limax also present in the culture is $5-6 \mu$ in diameter with an endosome of 3μ. The rariation in size of the spheres is, therefore, more simply explained on the hypothesis that they represent amoebae of different sizes which have bern ingested, than in any other way.

The fact that some of the spheres developed, after they werextruded, into typical small amoehae certainly suggested that they were reproductive borlies; hut this was just as easily explained as the escape of an ingested amoeha after successfu] resistance to the digestive juices of its captor, and such an explanation was more in accordance with the other facts.

Another important fact against the view that the spheres were endogenous buds was the observation that the splures. while inside the amorbae, oftern contamed diatoms and othor food matter in food vacuoles (PI. 28, figs. 2 and 5 , and P1. 29, figs. 7,8 , and 9). This is highly significant in vicw of the fact
that the amoelae in the culture were all feeding principally upon diatoms. Endogenous buds, when they are formed in other groups of Protozoa, are invariably free from food racuoles until after ther are born, and it is indeed difficult to imagine how they could obtain any solid food until they are set free. Eren if we adopted the fantastic view that, in the case under consideration, the spheres had obtained the diatoms from the amoebae in which they lay, it is impossible to explain how they did so, seeing that a racuole filled with fluid lay between them and the protoplasm of the amoebae. The presence of that racuole is, of course, in itself no argument against their being endogenous louds, since most endogenous buds develop inside a carity or ' brood chamber ' in the parent.

A still more significant detail is, however, the observation, made upon the living object, that, when the sphere was extruded, the remains of diatoms might be extruded with it from the same racuole. This can only mean that the diatoms were taken up at the same time as the sphere, a fact which is easy to understand when we remember that the amoebae were feeding mostly in the clumps of diatoms and débris in the culture rather than in the open. The vacnoles in which the spheres lay were, therefore, true food racuoles and not of the nature of • brood chambers • This does not prove, of course, that they wrere not buds, since the amoebae were seen to ingest the free spheres, and it might be argued that the spheres were no less true buds because their parents were eating them. But, taken in conjunction with the absence of any evidence of the mode of formation of buds and the presence of food racuoles in their cytoplasm, it is a very significant piece of evidence.

Another observation pointing in the same direction is the fact that the spheres were not always perfectly spherical, but were often irregular in shape and, indeed, were, in some cases, seen to undergo form changes while inside the amoebat (cf. p. 686, supra). This strikingly suggests that ther were anoebae which had been ingested.

The hypothesis of endogenous budding breaks, however, on
the same rock as did the parasite hypothesis. It fails to explain the occurrence of several anoebae enclosing one another, as are shown in Pl. 28, figs. 1 and 2. This conld, it is true, be interpreted as endogenous budding with pathological delay of the birth of each bud, so that an appearance of concentric fission resulted: but there seems to be no necessity for so fantastic a riew, when the structure can be explained naturally and simply as the result of camnibalism.

Lastly, it is difficult to understand why endogenous budding, if it occurs in the Amoebaea, has not been fully described already, seeing that such a vast amount of work has been done on these organisms. It is true that Penard (21) has made several references to the occurrence of so-called ' embryos 'in Pelomyxa and in various amoboae. With regard to Pelomyxa, he says that ' in the month of October, 1900, the greater part of the individuals examined contained, in their bodies, true embryos. These embryos, apparently swimming in the plasma, . . . showed as little grey masses, spherical, ovoid or pyriform, in the interior of which one saw some little, brilliant grains, one or two vacuoles and a rague appearance of nuclei. Isolated by compression of the Pelomyxa the cmbryos pushed out slowly prolongations in the form of little wases or lobes and continually deformed themselves in their entirety: He was also able to convince himself of the presence of a contractile vacuole, which 'only functionerl in a laţe mamer . and he was sure of the presence of a ' nuclens, romm, with a muclear membrane already formen and distinct, with melear sap and a central nucleolus and one or two other spherules. . . . which seemed to represent muclei also : Hu adds his opinion that 'the presence of thess cmbrros, lising in goond health in the plasma of the Pelomyxa ithd usually multimeluate, sems to mes to indicate that they are products of the amimal it self and not parasites '.

This description suggests that her may hatw berold dealing with either parasites or with immolbate of the 1 mowba limax type which had been ingested by the Pelomy xa: lout dombt is thrown over the whole of the ohservations ly his statrment,
on another page of the same work, that he believes with Greef that the so-called "Glamzkörper" of Pelomyxa develop into small amoebae similar to those which he saw pass out of the Pelomyxa. From his account it serms likely that he has confused varions different structures, true 'Glanzkörper', fungal and Flagellate food, and ingested small amoebae. This is only another instance of the difficulties which arise, especially for other workers, when observations on living specimens are not controlled by properly made permanent. preparations.

Penard, in the same work, makes other references to the occurrence of similar 'mbryos' in the amoebae which he names A. nitida, A. villosa, A. annulata, A. nobilis, A. terricola; and in Phizopods like Difflugia, Diaphorodon, and, above all, in Nebelidae, he found bodies which he thought may have been reproductive in nature. In most of these cases he gives figures which certainly suggest strongly that he was dealing with amoebate which were ingesting and extruding again other amoebae of the same or other species. In the 'embrys' of A. nobilis he saw 'little diatoms" and "little grains which appear to proceed from digestion' ; and those of A. nitida contained 'the appearance of little grains of starch or little diatoms, which themselves seemed to be in course of digestion'. But he does not seem to hare thought it necessary to explain how these 'embryos ', while inside their 'parents', had been able to ingest their diatoms. It seems very likely that these ' embryos 'were similar in nature to the spheres in my amoebate and that Penard fell into the same error as that from which I was only saved by the study of permanent preparations.

Grosse-Allemman (13), in a stmly of Amoeba terricola, saw, in two instances only, a swollen amoeba full of small spheres of $30-40 \mu$ in diameter, and he supposed that he was dealing with the end result of multiple tission. Penard (21 d) saw somewhat smilar phenomena in the same amoeba, but regarded the spheres as parasites which had developed inside the Amorbaterricola and which wereset free by its death.

Mach more plausible, howerer, are the accounts of endogenous budding in amoebae given by Liston and Martin (19), Wherry (30), and Hogue (15). The last-named worker also describes the formation of "exogenons "buds. by the streaming out of chromatin granules from the karyosome into the ectoplasm, where they collect to form the nuclei of the exogenons buds. Her figures and description, however, suggest that the so-called chromatin granules were either artefacts or parasites like the Chytridiacear referred to above.

Hogue's figures of the endogenous buds, like those of Wherrs. are much more convincing and show a striking resemblance to the figures illustrating this paper. Neither of these workers, however, has given a detailed description of the so-called - buds ', nor was the development of the " buds " followed. Had this been done in all probability a different conclusion as to their real nature would have been reached. It should be noterl, also, that in both these cases the amnebae were studied in agar media, which camot be regarded as a somm method of cultivating these organisms. Fiurther, the cultures were crowded with amoebae, a state of affairs which would tend to encourage the ingestion of the amoelar heme another

Liston and Martin (19) have described endogenous budding in a large amoeba from liver-abscess pus. This amorbal also was studied on agar media. Liston says that he saw all amoeba develop three or four 'buds' within its body while muder observation and that these were liberated. Oldm and largar amoebae might contain as many as six " hads "in various stages of development. If this were so, it is mulikely that they were true endogenous buds at all, becanse emdorenous buds are usually formed of a certain definite size which does not incrase or change before they are born. Liston also states that the 'buds' became recognizable in the amorbare 'when a larger mass of chromatic material was assmblert that coubl he reasonably explained on the supposition that it was formonf from ingested bacteria', that the "huds "were formed aromad these masses of chromatic material, and that these masise then became the nuclei of the buds '. Nartin, in a study of tha
stained material, confirms this and says that the nucleus of the - bud ' is formed from 'chromidia contained in it when it is first formed and derived from the chromidia scattered through the cytoplasm of the parent '.

He also says, howerer, that 'the muclens of the amoeba takes no direct part in the formation of the bud. There is absohtely no evidence, either from observation on the live amoebae or from the stained films, for any form of nuclear division connected with the bud formation.

This latter statement might equally well have been made about the spheres described in this paper. When it is remembered that I also, under the influence of the view that the spheres were endogenous buds, found in my amoebae structures which could easily be interpreted as chromidia, the parallel is complete.

Cpon re-examination of my preparations, however, I have been mable to convince myself that the fine grains in my amoebale were chromidia at all, and certainly I have never seen anything resembling a collecting together of these grains inside the spheres to form their nuclei. All the spheres had a fully-formed resicular nucleus. While I must admit, therefore, that Martin may have been dealing with something quite different from my spheres, I still am of the opinion, without desiring to impugn his high reputation as an accurate observer, that his buds' were in reality of the same nature as my spheres, that is to say, that they were amoebae of the same or another species which had been ingested. ${ }^{1}$ Two types of amoebae were present in the cultures of Liston and Martin, and it is possible that one kind was ingesting the other. The method of cultivation of these organisms upon agar

[^0]media might be expected to induce them to exhilitit almormal behariour in this and in other respects.

It is much more probable that Wallich (29) also saw sompthing similar to the observations recorded in this paper, sincer he figures a small amoeba which he calls al 'remmule "and believed he had proved the occurrence of 'gemmation "and 'viviparous reproduction' in Amoeba villosa. His 'viviparous reproduction 'seems to rest upon the occurrence of many small amoebae in his cultures, such as also oecourred in my own, and it is probable that his 'gemmul,' was either an amoeba which had become romuded off or one which had been recently extroded, after having been ingested. He alsu describes structures which he calls ' nucleated corpuscles "and ‘sarcoblasts ", and he says that the "sarcoblasts "are wheiously. reproductive, because, althongh he never saw them develop into amoebae while they were jet within an 'amoelai cyst' (a structure which is obviously not in cyst, hut a dying ammela), yet he saw bodies present in the same flnid at the same time, outside and identical in appearance, which did develop into, amoebae! since he made no permanent preparations, it is not possible to know what he really was dealing with, but it is unlikely that either the 'sarcoblasts " or the " mucleated corpuscles' were in any way similar to my spheres. Wallich, however, further describes what he refers to ats it process resembling gemmation or viviparons reproduction: His figure of a 'gemmule' is very like the recently extroded sphere of my cultures, but since Wallich says that ho nower saw his 'gemmule' emerge, and further that ho is 'maible to rouch for ' the process of gemmation 'on his awn anthority', it is not possible to attach much importange to his wherervations.

While there are, therefore, seviral reformetes to the nceurrence of endogenous budding in the Amoertace, there serms: to be no single record of it which is froe from doult and certainly no record which has beepl contirmed ly sulsimpurnt. workers. This is a curions fact, when we remmemer that endogenons budding does secur in forms sin chmilly allied to the Amoebacea as Arcellia and other The emanedida. It evern
suggests that, either some of the cases cited abore are correctly interpreted as instances of endogenous budding, or that, alternatively, the Thecamoebidae are not so closely allied to the Amoebae as has been thought.

All these considerations shook my belief in the rery attractive riew that I was witnessing an epidemic of endogenous buddling.
(3) Hypothesis of Cannibalism.

Turning to the third alternative I found that the camnibalism hypothesis not only explained those facts which the other views explained, but explained them much more simply and readily. In addition, it did not fail where the other two views had failed. This hypothesis prorides the simplest explanation and it corers all the facts without introducing into the already complicated problem of the life-history of amoeba a new and hitherto unauthenticated process.

Further, it explains simply enough how such structures as those shown in Pl. 28, figs. 1, 2, and 4, and Pl. 29, fig. 7, can arise. These structures are explained in detail in the text explaining the figures. It is sufficient here to say that such structures arise by the ingestion by amoebae of other amoebae which had previously themselves ingested yet other amoebae, a process which can give rise to the most remarkable and complicated structures. Such phenomena must be pathological. Whether cannibalism itself is pathological is a matter of opinion, in the present state of our knowledge. That it is not a frequent occurrence is shown by the pancity of references to it in the literature, although Doflein ($\mathbf{9} a$) says that he has often seen cannibalism, i.e. the cating by amoebae of young forms or of cysts of their own species, and that such occurrences have given rise to statements about internal budding and formation of embryos.

An amoeba, in the absence of its normal diet, will eat almost anything. In my own cultures of Amoeba proteus, for example, these organisms, which were thriving upon a diet
of bacteria, became voracions carnivores when they were supplied with Colpidium colpoda; and Doflein has recorded a similar fact ($9 b$). It is not surprising, therefore, that an amoeba like Amoeba respertilio, which feeds nomally upon diatoms and had been kept for many years in an old hay infusion in which its normal food supply must bave been for long scarce, and in which Paramoecium and other Ciliates were present, should have turned, under the stimulus of the change of environment provided by the sub-cultures, to the ingesting, not only of the diatoms which developed in those sulb-cultures, but also of other amoelbae, both of its nwn and of other species.

At first I was inclined to think that starration played a part in causing the amoebae to become camibalistic. They slowed, however, few other signs of starvation. They exhibited normal activity, they multiplied abundantly, aurd, lueyond what was probably a more marked racuolation than is usual for the species, were in no other way abnormal. They are still living in the same dishes, although they have been practically untouched for two years; but they only occasionally now ingest one another, and are feerling actively upen algac which have developed in the cultures.

It is, morenver, by no means certain that in 1920 they were ingesting their own species alone. Though this probably occurred often, in other cases a comparison of the sizes of the spheres and especially of their nuclei with those of the other amoebae present in the cultures (cf. supra, p. 675) suggested that the small spheres were mostly ingested examples of Amoeba limax. Many of the medium-sized spheres might equally well have been cither large imtividuals of A . Iimax or small examples of A. vespertilio.

In this commexion the interesting question arises as to whether an amoela, even if it ingest a member of itsonn species, can digest it. I have only been able to follow, in the living object, one case of what appeared to be the digestion uf the ingested sphere (v. also supra, p. 686). In the stained proparations spheres were oftern siem, of all sizas, which took the
stain more feebly than the others on the same slides, the nucleus often not staining at all. These may have been spheres which were undergoing digestion, or they may have been merely dead ones. In the majority of cases the spheres certainly seemed to resist digestion, although it was evident that most of them were killed by their sojourn in the food racuole or were, at any rate, so much damaged that they were unable to resume their activity after they were extruded. The appearance of a contractile racuole in them indicated an attempt at the resumption of vitality ; but usually the attempt went no further and the extruded spheres disintegrated if they were not again ingested. In a few cases abortive attempts at amoeboid movements occurred; and in fewer still these were successful and the sphere became transformed again into a small amoeba which was apparently little the worse for its experience.

It is evident, therefore, that the amoebae found difficulty, at least, in digesting other amoebae which they took up. They might, therefore, extrude them again, just as they will extrude other indigestible material. If these extruded amoebae had been killed by their sojourn in the food racuole or died soon after extrusion they might be again ingested by other amoebae ; and it is probable, although I can prorluce no evidence to prose it, that these dead or dying amobare could be digested. One is reminded here of the fact that, in Vertebrates, the gastric juice does not digest the mucons membrane of the stomach, unless that is damaged or in a pathological condition, but that post-mortem digestion of the stomach can and does occur.

Another reason for the extrusion of the splieres is suggested by the observation of Rhumbler, as quoted by Minchin (19a), that amoebae disgorge any food matter that they may contain under the influence of strong light, such as that to which they are subjected when they are brought into the field of the microscope. That this is not the only reason in this case is shown by the frequent occurrence of free spheres in the cultures themselves, before any of the fluid had been examined under the microscope. They could be picked up from the bottom
of the culture dishes with a pipette, and must, therefore, have been extruded in the cultures where the stimulus of strong light did not operate. Drying of the slide might conceirably have caused extrusion, as Wallich also suggested (29). But this factor also would not operate either in the cultures or in the preparations used for observing living specimens.

To return to the question of what caused the amoebae to become cannibalistic, I am unable to offer any intelligent suggestion. It has already been mentioned that the cultures were not unhealthy, since the amoebae throre and multiplied, as did also the Ciliates and other small amoebae. The balance of evidence showed that the amoebae were not to bee regardect as starred, and certainly not as so starved that they resorted to utilizing their own kind as foorl, a condition which must be rare in both natural and artificial conditions. Further, we have seen that it is at least rery doubtful that they were really feeding at all on the amocbae which they ingested, since the evidence is that they could only rery occasionally digest them. Their condition seems to have been like that of the amy recruit, who, when he asked for a drink on the marel, was told to suck a stone.

A possible explanation may be sought in the tiew that the amoebae had become so numerons in the cultures that the active ones were ingesting the rounded ones and, finding them indigestible, were extruding them again. schacfior's work on the feeding habits of amoebae (23) is interesting in this comnexion. He found that the ingestion of particles by amoebae is not to be explained entirely by chemotaxis, but that other factors operate, especially movement, "ither natural or mechanical, in the material offered, the nature of the amocla itsilf, i. e. whether it were 'raptorial ' or not, the physical similarity to or difference from the normal diet of the material offered and the degree of hunger from which the amochar were suffering. He found, for example, in his experiments with carmine grains, that the amoebae got rid of these much more quiekly than normal food matter, and generally as soon as posibible. Also he thought that the carmine was extruded becanse it. was
actually disagreeable to the endoplasm, though not to the ectoplasm, and not merely because it was indigestible. Further, a piece of carmine was eaten only once if the amoeba was only mildly hungry : several times if it was very hungry ; but the amoebae showed less and less inclination to ingest the same grain if it were offered to them several times in succession. The same was true if a number of different grains were offered, each only once.

It is obvious, therefore, that the factors which govern the feeding of amoebae are by no means simple. It is probably for this reason that I have been mable to induce my amoebae to repeat their performance of 1920 , either in the old or in fresh cultures, on anything like the same scale. I have also looked carefully for similar phenomena in thick cultures of A moeba proteus obtained by the methods of Taylor (2\%) and Doflein $(\mathbf{9} b)$. But, although these amoebae often exist in such numbers that they are in close contact, and are actively feeding upon Colpidium and Chilomonas, i. e. upon a carnirorous diet, they have never showed the slightest tendency to ingest one another. Schapffer (23) also found that his amoebae, although they were eating Ciliates and Flagellates readily, never ingested one another. Further, Doflein (9), in his study of Amoeba respertilio, does not mention any case of their ingesting one another. He used, however, chiefly amoebae containing zoochlorellae, whose metabolism must have been, therefore, abundantly provided for even in the absence of their normal dict; and in my own cultures of Amoebae vespertilio containing zoochlorellae, relatively very few of the amoebae contained spheres, and in those which did the spheres also contained zoochlorelliae.

It is rery likely, therefore, that the epidemic of cannibalism which is described in this paper was an isolated occurrener, dependent for its causation upon the physical and chemical constitution of the culture medium and also, as Schaeffers work shows, upon the phesiological condition of the amoebae themselves. The fact that, in those other cases in which similar phenomena hare been observed in other than isolated
individuals and which have been erroneonsly interpreted as cases of endogenous budding, the amoebae were studied muder conditions of artificial cultivation which at least differed widely from the nomal environment of the annebate, is additional evidence in support of this riew. Until the methods of cultirating Protozoa are standardized upon the basis of a scientific physical and chemical analysis of the nomal enviromment of these highly sensitive organisms, we must expect that at ypical and bizarre phenomena will be witnessed in cultures, and that these will not only be rashly interpreted by the inexperienced, but will also readily mislead eren the most careful and conscientions workers.

Reviewing the whole of the facts, I conclude that the hrpothesis of camibalism explains the facts described above readily and simply. It explains the rariation in size of the spheres and the similarity of their strncture to that of the amoebate which contained them. It explains also their inability 10 live after extrusion, the presence of food in them while they were still inside the amoebae, and the complete absence of any cytological widence of the formation of endogenous huls. It affords also an explanation of the ingestion and extrusiom and, in some cases, of the re-ingestion of the spheres, and of the remarkable occasional occurrence of several amocbate chelosing one another. I am, howerer, unfortunately unable to throw any light upon the interesting question as to whether an amorba can digest individuals of its own species, or to deetermine what the actual stimulus was which led these amoebae to adopt temporarily the camibalistic habit.

In conclusion, I am pleased to hate the opportunity of teeneding here my indehteduess to Professor S. .I. Hickison, Ji.R.S., in whose department the work was hone, for his kindly interest and help, and to Miss Am Bishop, B..'c., and Mr. J. 'T. Wialsworth, for many rery useful suggestions and helpful criticisins.

Scmary.

1. This paper describes the temporary adoption lix A mocha vespertilio of camibalistic habits. The ammetate fro-
quently ingested, but in most cases failed to digest, other individuals of their own and also of other species (A. limax).
2. In some cases, an amoeba, which had ingested another, might itself then be ingested by a third amoeba; and these three might then be taken up by a fourth amoeba, so that remarkable figures, suggesting concentric fission, resulted.
3. The rictims were usually ingested while they were rounded off or sluggish, and, after extrusion, usually failed to resume their activity, although most of them developed contractile racuoles and some showed tentative amoeboid morements. A few recorered their normal activity and resumed normal life. Amoebae, after extrusion by one amoeba, were often taken up again by other amoebae.
4. In one case an Amoeba vespertilio was observed to chase and enclose an Amoeba limax, but the Amoeba limax subsequently escaped again.
5. The ingested amoebae may easily be mistaken for endogenous buds, but there is less danger of their being mistaken for parasites.
6. No trustworthy evidence was found as to the nature of the stimulus which caused the adoption of these habits, but the question is discussed.

Literature.

1. Buck. Emil (1878).-" Einige Rhizopodenstudien ", 'Zeitsehrift für wissenschaftliche Zoologie ', Bd. 30.
2. Bütschli, O. (188--9).-Protozoa in Bromn's 'Thierreich', Leipzig.
3. Calkins. (iary N. (1904-5).-" Evidenees of a sexual evele in the Life-history of Amoeba protens ", 'Archiv für Protistenkunde', Bd. 5.
4. Carter, H. J. (1863).--" On Amoeba princeps and its reproductive cells", 'Amnals and Magazine of Natural History', vol. 12, p. 30.

4 4. - Ibid., vol. 18, p. 223.
5. Chatton, Édouard, and Brodsky, A. (1909).-" lo parasitisme d'une Chytridinée du genre Siphaerita (Dangeard) chez Amorha limax (Dujardin) ", 'Archiv für Protistenkunde ", Bd. 17.
6. Collin, Bernard (1882).-"Étude monographique sur les Aeinétiens", 'Arehives de Zoologie Expérimentale et Ciénérale', tome 51, pp. 1-457.
7. Dangeard, P. A. (I886).- "Sur un nourean genre de Chytridiacées, parasite des lihizopodes et des Flagellates ", "Bulletin soc. Bot. France ', vol. 33.
$7 a$. - (1856).--" Recherches sur les organismes inférieurs ", "Amake sc. nat., Bot.' (万) iv.
76. -_ (1889).—" Mémoires sur les Chytridinées ", 'Le Botaniste ', i.
7.c. - (1895).- "Mémoires sur les parasites du Noyau et du Protoplasma ", ibid., vi.
8. Dobell. C. C. (1914).- Crytological studies on three species of Amoeba ". "Archiv für Protistenkunde ", Bd. 34.
8 a. Dobell, ('. C., and OConnor, F. W. (1922).-‘The Intestinal Protuzoa of Man '. John Bale. Suns, \& Danielsson, Lttl. London.
9. Doflein, F. (1907).-"studien zur Naturgeschichte der Protozoen. V. Amöbenstudien ". 'Archiv für Protistenkunde '. Suppl. 1.

9 a. - (1916).-'Lehrbuch der Protozoenkunde', tth ed., Gustar Fischer, Jena.
9b. - (1917-18).-"Die regetative Fortpflanzung von Amoeha protens (Pall.)"", 'Zool. Anzeiger", 49, 1p. .2.51-68.
10. Entz, Géza, jun. (1912).-" Über eine neue Amölse auf Süsswasser. Polypen (Hydra oligactis, Pall.)", 'Arehiv für Protistenkunde ', Bd. 27.
11. Gläser, Hans (1912).-" U'ber Kerntcilung, Encystierung und Reifung ron Amoeba mira, n. sp." ", iljid.
12. Greef, R. (1866).- "Leljer einige in der Erde lebenden Amöben und andere Rhizopoden ', 'Archiv für mikroscopisehe Anatomie', Bd. $\stackrel{2}{ }$.
$12 a$. - (1874).-" Pelomyxa palustris (Pelobius), ein amöbenartiger Organismus des süsswassers ", ibid.. Bd. 10.
13. Grosse-Allermann, Wilhelm (1909).-"Studien iuber Amoeba terricola (Greef)", "Archiv für Protistenkunde", Bd. 17.
14. Grüber, Karl (1911).-" ¿’ber eigenartige Körlerformen vn Amoeba proteus", ihid.. Bd. 23.
15. Hogue, Mary J. (191t-15).-"studies in the Life-history of an Anoeba of the Limax group, Vahlkamptia calkensi", ihid.. Bel. 3.\%.
16. Jennings, Herbert s. (1915).- "Behaviour of the Lower (Hgani-mis', Columbia University I'ress.
17. Lapage, C., and Wradsworth. I. 'T". (1916).- "Drindrocometen paritdoxus (Stein). Part 11. Reproduction (Bud furmation)", "Quart. Journ. Mier. Sei.', vol. 61.
18. Leidy. Joseph (1879).- Freshwater Rhizopods of North Amorica : Washington, Loniterl states fieological Surver:
19. Liston, W. G., and Dartin. (.. H. (1911). " (ontrilution- to the" -tudy of pathogenic Amochae from Bombay", "Quart. Journ. Mirr. Sci.', vol. 57.

19a. Minchin, E. A. (1912).- An Introduction to the Study of Protozoa '. Londou.
20. Nägler, Kurt (1911).-"Studien über Protozoen aus einem Almtümpel. II. Parasitische Chỵtridiaceen in Euglena sanguinea ", ‘Archiv für Protistenkunde ', Bd. 23.
21. Penard, E. (1902).- 'Faune rhizopodique du Bassin du Léman', Genera.
$21 a$. - (1903).-" Notice sur les Rhizopodes du spitzberg". 'Archiv für Protistenkunde ${ }^{\circ}$, Bd. 2 .
21b. - (1909).-"Sur quelques Rhizopodes des Monsses". ibid., Bd. 17.
21c. - (1913).-" Nouvelles recherches sur les Amibes du groupe Terricola ", ibid., Bd. 28.
21 d. - (1905).-" Obserrations sur les Amibes à pelliculc ", ibid., Bcl. 6.
22. Prandtl, Hans (1907).- " Der Entwicklungskreis ron Allogromia, sp.", ibid., Bd. 9.
23. Schaeffer, Asa A. (1916).-"On the Feeding Habits of Amoeba ", 'Journal of Experimental Zoology ', Philadelphia, rol. 20.
24. Schaudinn, Fritz (1903).-" Cutersuchungen über die Fortpflanzung ciniger Rhizopoden", 'Arbeiten aus dem Kaiserlichen Gesundheitsamte '. Bd. 19.
25. S'cheel, C'. (IS99).-"Beiträge zur Fortpflanzung der Amöben", 'Festschrift von Carl von Kupffer ${ }^{\text {., Jena. }}$
26. Schubotz, Hermann (190.5).-"Beiträge zur Keuntniss der Amocba blattae (Butschli) und Amoeba proteus (Pall.)". "Archiv für Protistenkunde '. Bd. 6.
27. Taylor, Monica (1919).-" Note on the Collection and Culture of Amoeba proteus for Class purposes ", 'Proc. Roy. Phys. Soc. Edinburgh', rol. 20, p. 179.
28. Töbler, Gertrude (1912).-"Die Synchytrien, Studien zu einer Monographie der Gattung '", 'Archiv für Protistenkunde ", Bd. 27.
29. Wallich, f:. ('. (1863).-"On an undescribed indigenous form of Amoeba ", 'Annals and Magazine of Natural History', vol. 11, pp. 287-90, 365-71, 434-52, and vol. 12, pp. 329-37, 448-66.
30. Wherry, William B. (1913).-"studies on the Biology of an Amoeba of the Limax group, Vahlkampfia species No. 1 ', 'Archiv für' Protistenkunde ', Bd. 31.
31. Woodeock, H. M., and Lapage, G.- "Observations on the Life C'ycle of a new Flagellate, Helkesimastix faccicola, in.g. n. sp., \&c.', 'Proc. Roy. Soc. B.', wol. 88, 1915.
32. Woodcock, H. M. (1922).- "Hacmatophagy and Hacmataboly", 'Journ. Roy: Army Med. Corps'.

EXPLANATION OF PLATES 28 AN゙D 29.

Plate 28.
Fig. 1.-An Amocba vespertilio with resicular nucleus which shows well the meshwork structure of the endosome (E) and the clear halo round it. In the cytoplasm is a large vacuole (zac.1) containing another amoeba with its nucleus (n.1). This second amocha contains a vacuole (vac.2) which encloses a third amoeloa and its nucleus (r.2). The third amoeba contains another vacuole (rac.3) which encloses a fourth amoeba and its nucleus (r.3). Ect., Ectoplasm. End.. Endoplasm.

Fig. 2.-An Amoeba vespertilio with its nucleus (N). The amoclaa contains food vacuoles and a vacuole (cac.1) in which is a second amocha with its nucleus ($n .1$) and two food vacuoles contaiuing diatoms. This second amoeba contains in a vacuole (rac.2) a third amoeba with its nucleus ($n, 2$).

Fig. 3.-A free sphere containing diatoms in food racuoles ((λ). n, nucleus.
Fig. 4.-An amoeba with its nucleus (N) and two vacuoles, In one of the latter lies a second amoeba with its nucleus $(u .3)$. In the other is a third amoeba with its nucleus (2.1), and this again contains a fourth amoeha with its nucleus (n:2).

Fig. 5.-An amoeba with its nuclens (X) and food racmoles (f.b.). which has ingested one other amocba with its mucleus (n) and food vacmoles (f.b.1).

Fig. 6.-A typical free sphere, extruded from an amocha (compare with the ingested amoeba in fig. 5). The structure of the nucleus is well shown (compare with the nucleus of the outer amoeba in figs. 1, 2, and 4).

Plate 29.

Fig. 7.-An amoeba with its nucleus (N) and a fond racuole (fivac.). It contains three other vacuoles, in two of which two other ammelar lie. One of these, with its nucleus (n.1) is free from food bodies ; the other. with its nucleus ($n .2$) contains diatoms. The third vacuole contains an amoeba with its nucleus ($n .3$), which itself contains a food vacuole. (f.vec.1) and three other amocbae with their nuclei ($2.4,4.5$, and 2 .6.6). the latter being free from food bodies.

Fig. 8.-An amoeba containing two other amoebace in scparate vactules, one of which is a typical sphere, the other an elongate oval. Both the ingested amocbae contain food bodies.

Fig. 9.-A star-shaped form of Amoeba vespertilio with its nucleus (N) and food vacuole (f.b.). It contains another amoela with its nucleus (n) and food bodies (f.b.I) (ef. Ill. 28, lig. i).

Fig. 10.-An Amoeba vespertilio with a large food vacuole(f.ruc.) and an irregularly-shaped amoeba which it has ingested.

Fig. 11.-An amoeba with its nucleus (N), which has ingested five other amoebae, the smallest of which are probably A. limax. $n .1-n .5$, nuclei of the ingested amoebae.

Fig. 12.-A binucleate amoeba with its two muclei (N, N), with food bodies and an ingested amoeba with its nucleus (n).

[^0]: ${ }^{1}$ Dr. H. M. Woodcock, of the Lister Institute, first suggested to me, in 1920 , that the 'buds ' described by Liston and Martin were probably not true buds at all and thus gave me the clue to the real nature of the spheres in my own cultures. Recently Dobell and O° Connor ($8 a$) have expressed the same opinion. Compare, also, the still more recent remarks of Woodcock (32) with regard to the need for eare in the interpretation of cultural forms of Protozoa.

